
Trusted Cryptographic Tools Locking

V.N.Tsypyschev1,2,3

1 Moscow Technological University, 78, Vernadsky Avenue, Moscow, 119454, Russian
Federation

tsypyschev@yandex.ru
2 Moscow Institute of Physics and Technologies (State University), 9, Institutsky

pereulok, Dolgoprudny, Moscow Region, 141701, Russian Federation
3 S-Terra CSP, 5, Georgievsky ave., Zelenograd, Moscow, Russian Federation

Abstract. Up to current moment it is actual to lock trustworthy cryp-
tographic services of the complex product providing information security
services. These cryptographic services, as usual, are included in as part
of delivering complex product and must not be activated without proper
additional license.
In this article, we provide a method of cryptographic services locking and
a protocol of its activation including a legal customer authentication.
The main reason of this work is that the law of some countries prepends
to export complex information security products with available crypto-
graphic tools.

Keywords: Trustworthy Services Locking, Cryptographic Protocol, Soft-
ware Customer Authentication

1 Introduction

The task concerning in this article is to provide a method of reliable, robust, se-
cure, and solid locking of a part of software services, especially its cryptographic
tools, until it’ll be legally activated. A protocol of authentication of legal cus-
tomer and services activation is a main part of this method.

Further we assume that

1. Cryptographic tools developer must to create and implement an algorithm
of legal customer’s license generation and validity checking under condition
that software code may be publicly known and doesn’t contain confidential
data.

2. The algorithm of license generation and its validity checking must provide
an unique license for given delivery and legal customer under condition that
software code must be fixed and unaltered.

3. The algorithm of license validity checking must be executed successfully if
and only if legal customer has typed his unique license data (LD) during
installation process.

4. The algorithm of license validity checking must be implemented in an in-
staller.

2

5. The algorithm of license validity checking must involve data inextricably
linked with software code

6. Installer must activate cryptographic tools only after successful license data
and legal customer data validity checking

7. It is technically impossible to activate cryptographic tools without installer.

8. It is technically impossible to simulate an installer to activate cryptographic
tools

9. It is technically impossible to use an inactivated cryptographic tools code

10. For every legal customer the activation of cryptographic tools is executed by
himself or by trusted employee.

So, cryptographic tools developer must be directed by paradigm ”If not ac-
tivated, then locked”.

The difficulty of construction of such algorithm of generation license and its
verification is consisted in the demand to type the license during the installation
process. It means that the length of license couldn’t be more than 25 bytes of
printable characters.

Avoiding it we could go this evident way: to form the file from developer data,
product custom code, legal customer data, license data and sign it by secret
key fixed for whole custom. Then the verification algorithm should consist in
signature verification using an open key inextricably linked to the cryptographic
tools code.

Other way possible to use is to encipher those data by trusted two-key algo-
rithm and further decipher it during installation process.

The inconvenience of those ways consists in that the signature should be
at last 64 bytes of unprintable characters and after an ASCII85 application it
should generate a license of at least 80 bytes. It is evident that so long license
can’t be typed during verification process.

Indeed, Bundesamt fuer Siecherheit in der Informationstechnik (BSI), Ger-
many, has published [2, Table 3.2] this data:

Table 1. BSI estimation of two-key algorithms size and its complexity

lg2 R ECDLP Factorization / DLP in F∗
p

60 120 700
70 140 1000

100 200 1900
128 256 3200
192 384 7900
256 512 15500

3

Here ECDLP denotes the size of group of points of elliptic curve with
complexity of finding discrete logarithm by Pollard’s ρ-method is equal to 2R

group operations, Factorization denotes the RSA-modulus size with complex-
ity of factorization by number field sieve method equal to 2R operations of ring
Z/2Factorization, DLP in F∗

p denotes that the complexity of discrete logarithm

problem in F∗
p is equal to 2R operations of this field in terms of number field

sieve method.
In this connection it is assumed that the parameters of elliptic curves are

chosen such that the complexity of Menezes–Okamoto–Vanstone method is not
less then the Pollard’s ρ-method.

Besides that, the data of [2, Table 3.2] are coordinated to Post Quantum
Cryptography problem.

According to [2, Table 3.2] neither one of well-known and trusted algorithms
of [3, 4, 7, 8, 6], nor RSA, ECDSS, GOST R 34.0—2012 can be used to settle our
demands.

So, the way could be used is to generate license as a result of pseudo–random
function based on ”good” cryptographic hash function as in [5] applied to that
file . This way allows to obtain a license of acceptable length, but now to verify
license it is needed to have a key of pseudo–random function what tends us
to the conception of Trusted License Server which would provide a verification
algorithm by needed secret information.

But now difficulties of communication with Trusted License Server arise.
Investigated all the reasons above we provide the method of licensing pre-

sented below.

2 Notation

1. EK , DK denote enciphering/deciphering in ECB mode with key K via block
cipher (AES or Kuznechik (GOST R 34.12—2015))

2. EK,IV , DK,IV denote enciphering/deciphering in CBC mode with key K
and initial vector IV via block cipher (AES or Kuznechik (GOST R 34.12—
2015))

3. ImitoK,IV denotes calculation of CBC-MAC with key K and initial vector
IV via block cipher (AES or Kuznechik (GOST R 34.12—2015))

4. HASH denotes cryptographic hash-function (SHA or Streebog (GOST R
34.11—2012))

5. HMAC(Key,Material) denotes pseudo-random function [5] with key KEY
and publicly known Material based on HASH-function

6. SignK(M), V erSignK(M) denote generation/verification of digital signa-
ture (ECDSS or GOST R 34.10—2012) with key K. If key is omitted then
it’s fixed and not altered

7. prime p is a modulus of elliptic curve
8. Ea;b(Fp) is an elliptic curve with its invariant j(Ea;b) and coefficients a; b ∈ Fp

such that
4a3 + 27b2 6≡ 0 (mod p),

4

9. integer m is an order of group of points of ellipic curve Ea;b(Fp);
10. prime q is an order of cyclic subgroup of points group of E such that{

m = nq;n ∈ Z;n ≥ 1;
2254 < q < 2256

11. P 6= O is a point of elliptic curve E , P = (xp; yp), such that [q]P = O;

We suppose that the either American suite, either Russian suite of crypto-
graphic primitives should be applied because of the compatibility reasons.

3 Method of cryptographic tool locking and license
generation

Now let’s assume that cryptographic tools code is locked via enciphering in CBC
mode according to trusted block cipher (AES or Kuznechik) of some text file
which contains some specific data. This data is an input of some specific calcula-
tion. The output this calculation determines work capability of the cryptographic
tools.

Enciphering must be executed in CBC mode with initial vector IV and with
key K = xC , where xC is a x-coordinate of point C = [k]P of elliptic curve Ea,b,
ordP = q.

As an example of the data we provide sample Y,K, Sign(Y,K).
As an example of specific calculation we provide:

1. verification V erSign(Y,K) with an inseparably tied with cryptotool code
signature verification key, fixed for all version of cryptotool

2. calculation of

X = DK(Y),

3. calculation of

H = HASH(X),

and after that H is essentially linked in cryptographic calculation process.
Further,

1. License structure has the form:

License :
License := { CodeOfProduct;

NumberOfLicense;
CodeOfCustomer;
LicenseCode; }

Here CodeOfProduct is a vendor’s code of cryptotool software,NumberOfLicense
is a number of issued license. Herewith vendor takes into account all issued
licenses. CodeOfCustomer is a setting data of the legitimate purchaser.

5

LicenseCode is the result of application injective publicly-known and in-
vertible code:

LicenseCode = EncodingAlgorithm(InitialLicenseCode).

As examples of such codes Base64 and ASCII85 serves.
InitialLicenseCode is an output of pseudo-random generator of the length
N1 = 8n bit.
After encoding length of field LicenseCode is a α times greater:

N2 = |LicenseCode| = α · |InitialLicenseCode| = 8αn.

2. Further we shall represent fields (bit sequences) LicenseCode, NumberOfLi-
cense and others as an integers where the most left bit of the field matches
to most significant bit of the integer

3. Trusted License Server stores all issued licenses identifying it by CodeOf-
Product and NumberOfLicense

4. Trusted License Server is able to generate digital signature. Verification key
of this signature is common for te cryptotool type, non-alter allthe time of
existence of cryptotool type, and inseparably linked with cryptotool code

5. The cryptotool activation performs by built-in installer. Installer is able to
perform functions of digital signature verification, cryptographic hashing,
and enciphering/deciphering. All thi functions are from the same suite of
cryptographic primitives.

6. Cryptographic properties of installer can’t be modified by user
7. Cryptographic properties of installer are developed to be executed by user

without essential support of developer
8. Technical documentation (technical description of cryptographic suite, in-

termediary protocols, interface description, etc.) is publicly accessible
9. Parameter CodeOfProduct is inseparably linked in code of installer

4 License validity verification protocol

Just now verification of license validity and activation of cryptotool code perform
according to this

Protocol

1. Installer gets from keyboard license number N , purchaser’s code C, and
license code L.
Meanwhile installer gets timer’s indications in moments of keyboard clicking
and stores it as sequence (T1, . . . , TM).

2. Installer forms pseudo-random values:

Nonce = HASH(T1 ⊕ T3| . . . |TM−2 ⊕ TM);

Nonce1 = HMAC(Nonce,N |L);

Nonce2 = HMAC(Nonce,Nonce1|N |L);

6

3. Installer forms and sends to Trusted License Server request:

(CodeOfProduct,N, [Nonce2 (mod q)]P).

4. Trusted License Server forms and sends to installer reply

((CodeOfProduct,N, [Y]P), Sign(CodeOfProduct,N, [Y]P)) ,

herewith Y is a output of pseudo-random generator formed as an integer
modulus q

5. Installer verifies
Sign(CodeOfProduct,N, [Y]P),

and forms seance key

SeanceKey = HASH([Nonce2 (mod q)][Y]P).

If Sign(CodeOfProduct,N, [Y]P) is not correct, then installer informs Trusted
License Server, sends it pair Nonce,Nonce1 and stops activation.

6. If Trusted License Server is informed by installer about stop of activation
and get Nonce,Nonce1, it verifies that

[Nonce2 (mod q)]P = [HMAC(Nonce,Nonce1|N |L) (mod q)]P.

If it is, it stops activation too and increase counter of activation tries. In
other case it proceeds.

7. Trusted License Server forms seance key:

SeanceKey = HASH([Y][Nonce2 (mod q)]P).

8. Trusted License Server gets an output of pseudo-random generator and forms
InitialV ector for CBC mode and ImitoKey to form CBC-MAC
After that it sends to installer

(NewInitialV ector,NewImitoKey) = ESeanceKey(InitialV ector, ImitoKey),

herewith enciphering is performed in ECB mode.
9. Installer sends to Trusted License Server values

(NewL, ImitoL) =
(ESeanceKey,InitialV ector(L), ImitoImitoKey,InitialV ector(L)),

herewith enciphering is performed in CBC mode with InitialV ector as an
initial vector, and

ImitoL = ImitoImitoKey,InitialV ector(L)

is a CBC-MAc with key ImitoKey and initial vector IiniialV ector for
Nonce1

7

10. Trusted License Server calculate

L = DSeanceKey,InitialV ector(NewL),

and calculate its CBC-MAC.
In the case if calculated CBC-MAC of L differs from received CBC-MAC
of L then Trusted License Server stop activation process, sends to installer
notification signed with its secret key.
Trusted License Server increase the counter of activation tries.
In other case Trusted License Server verifies that

L = LicenseCode

stored at Trusted License Server Data Base. If it is, Trusted License Server
proceed.
Else Trusted License Server stop activation process, sends to installer noti-
fication signed with its secret key.
Trusted License Server increase the counter of activation tries.

11. Installer sends to Trusted License Server values

(NewNonce1, ImitoNonce1) =
(ESeanceKey,InitialV ector(Nonce1), ImitoImitoKey,InitialV ector(Nonce1)),

herewith enciphering is performed in CBC mode with InitialV ector as an
initial vector, and

ImitoNonce1 = ImitoImitoKey,InitialV ector(Nonce1)

is a CBC-MAc with key ImitoKey and initial vector IiniialV ector for
Nonce1

12. Trusted License Server calculate

Nonce1 = DSeanceKey,InitialV ector(NewNonce1),

and calculate its CBC-MAC.
In the case if calculated CBC-MAC of Nonce1 differs from received CBC-
MAC of Nonce1 then Trusted License Server stop activation process, sends
to installer notification signed with its secret key.
Trusted License Server increase the counter of activation tries.
In other case Trusted License Server calculates

X1 = ((Nonce1 ⊕ (LicenseCode|10 . . . 0)) (mod q))
−1

(mod q),

computes
Key = [X1][k]P,

and sends to installer

(EncryptedKey,EncryptedIV, Imito) =
(ESeanceKey(Key, IV), ImitoImitoKey,InitialV ector(Key, IV)).

8

13. Installer receives (EncryptedKey,EncryptedIV), computes in ECB mode

Key = DSeanceKey(EncryptedKey),

IV = DSeanceKey(EncryptedIV),

and check CBC-MAC.
In the case if received CBC-MAC differs from calculated CBC-MAC installer
informs Trusted License Server, protecting the notification by CBC-MAC,
computed with SeanceKey, InitialV ector. After that installer stops activa-
tion.
Trusted License Server increase counter of activation tries.
In other case installer represents Key as a point Q of elliptic curve Ea,b and
computes

C = [(Nonce1 ⊕ (L||10 . . . 0)) (mod q)]Q

After that installer deciphers with key K = xC and initial vector IV enci-
phered in CBC mode text file and after that start installation.
If installation succeed then Installer informs Trusted License Server and pro-
tects notification by CBC-MAC calculated with SeanceKey, InitialV ector.

14. Trusted License Server set InstallationF lag to 1 for pair N,L.

End of Protocol

Note 1. Trustworthy of this Protocol may be increased if installer provided by
VPN-client, pre-determinately configured to connect Trusted License Server only

5 Security considerations

In [1] were formulated goals to be achieved in cryptographic protocol construc-
tion process whether if those applicable to considered protocol. Below we list
goals achieved in considering Protocol.

1. G1 (peer entity authentication)
2. G2 (message authentication)
3. G3 (replay protection in the sense that all messages were generated in current

seance)
4. G7 (key authentication)
5. G8 (key confirmation, key proof of possession)
6. G9 (perfect forward secrecy)
7. G10 (fresh key derivation)
8. G12 (confidentiality, secrecy)
9. G16 (sender invariance)

6 Conclusions

So we have proposed the method of trusted cryptographic tools locking, its
licensing, and protocol for license verification and cryptographic tools activation

Also we have provided some consideration about trustworthy of Protocol
proposed

9

References

1. Automated Validation of Internet Security Protocols and Applications
(AVISPA). IST-2001-39252. Deliverable D6.1 List of Selected Problems. 2005.
http://www.avispa-project.org/publications.html

2. Cryptographic Mechanisms: Recommendations and Key Lengths // Bundesamt
fuer Siecherheit in der Informationstechnik, BSI TR-02102-1, February 22, 2017

3. Buchmann J., Dahmen E., Huelsing A. (2011) XMSS - A Practical Forward Se-
cure Signature Scheme Based on Minimal Security Assumptions. In: Yang BY.
(eds) Post-Quantum Cryptography. PQCrypto 2011. Lecture Notes in Computer
Science, vol 7071. Springer, Berlin, Heidelberg

4. ElGamal T. A Public Key Cryptosystem and a Signature Scheme Based on Dis-
crete Logarithms// Advances in Cryptology - Crypto 84. Springer. 1984. pp.
10-18.

5. D. Harkins, D. Carrel The Internet Key Exchange (IKE) // Request for Com-
ments: 2409, https://tools.ietf.org/html/rfc2409

6. KCDSA Task Force Team The Korean Certificate-based Digital Signature Algo-
rithm // http://grouper.ieee.org/groups/1363/P1363a/contributions/kcdsa1363.pdf
see also ISO/IEC 15946-2

7. Kaisa Nyberg, Rainer Rueppel A New Signature Scheme Based on the DSA Giv-
ing Message Recovery // 1st ACM Conference on Computer and Communication
Security. ACM Press. 1993. pp. 58 61. 372

8. C.P. Schnorr (1990), ”Efficient identification and signatures for smart cards”, in
G. Brassard, ed. Advances in CryptologyCrypto ’89, 239-252, Springer-Verlag.
Lecture Notes in Computer Science, nr 435

